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ABSTRACT 

Weierstrass points are defined for invertible sheaves on integral, projective 
Oorenstein curves. An example is given of a rational nodal curve X and an 
invertible sheaf ~ of positive degree on X such that the set of all higher order 
Weierstrass points of ~ is not dense in X. 

1. Introduction 

Let Y be a smooth, projective curve of genus g -_> 2 over C and let ~ denote 

the canonical bundle on ¥. A point P @ Y is called a Weierstrass point (of order 

1) if dimH°(Y,~(-gP))>O. For n > 1, put 

y, = dim H°(Y, fl®") = (2n - 1)(g - 1). 

A point P ~ Y is called a Weierstrass point of order n if 

dim H°(Y, fl®" ( - y,P)) > 0. 

Equivalently, Weierstrass points of order n may be defined in terms of n-gaps or 

in terms of the Wronskian formed from a basis of H°( Y, ~®" ) (cf. [3, pp. 84-85]). 

More generally, if 37 is an invertible sheaf on Y, then one may define P to be a 

Weierstrass point of order n of 37 if dim H~'(Y, 37®"(-s , ,P))> 0, where s, = 

dim H ° ( Y , ~  ®") (cf. [12], [10]). This agrees with the definition in terms of 

Wronskians (as in [5], [ l l  D. Put 

W(37) = {P E Y: P is a Weierstrass point of order n of 37 for some n >_- 1}. 

Suppose deg 37 > 0. Then Olsen [12] showed that W(37) is dense (in the complex 

topology) in Y and Mumford (unpublished, but see [8]) and Neeman [10] 

established the stronger result tbat W(37) is uniformly distributed in Y. These 
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three proofs all make essential use of the theta divisor on the Jacobian of the 

curve. 

Widland [13] has extended the classical notion of Weierstrass points to 

integral, projective Gorenstein curves. Singular points are always Weierstrass 

points and have high Weierstrass weight. This may be interpreted to mean that 

as a family of smooth curves degenerates to an irreducible Gorenstein curve 

(e.g., a curve with nodes), many of the Weierstrass points tend toward the 

singularities. In this regard, Diaz [2] has shown that "the generic non-separating 

node on a uninodal stable curve is a limit of exactly (g - 1)g Weierstrass points 

on nearby smooth curves." 

In the next section, we extend Widland's definition to treat Weierstrass points 

of order n of an invertible sheaf on an integral, projective Gorenstein curve. It 

then may seem reasonable to expect that the set of all higher order Weierstrass 

points of such a line bundle, assuming the bundle has positive degree, will be 

dense. On the other hand, the fact that many Weierstrass points on "nearby"  

smooth curves tend toward the singularities might be expected to "skew" the 

distribution of Weierstrass points. In the final section, we give an explicit 

example of a rational nodal curve X and an invertible sheaf 2? on X of positive 

degree such that the set of higher order Weierstrass points of 37 is not dense in 

X. Our argument uses the analogue of the theta divisor on the generalized 

Jacobian of X. 

We work over the complex numbers and we will let P~ denote the complex 

projective line, which we also identify with the extended complex plane. We will 

use the terms "invertible sheaf" and "line bundle" interchangeably. We thank 

Carl Widland and Carruth McGehee for helpful conversations. 

2. Weierstrass points of line bundles on Gorenstein curves 

Let X be an integral, projective Gorenstein curve of arithmetic genus g > 0 

over C. Let  to denote the canonical bundle of dualizing differentials on X and 

suppose 37 is an invertible sheaf on X. Put s -- dim H°(X, 37) = h°(37). Assume 

s > 0 and choose a basis ~b~ . . . .  , ~bs for H°(X, 37). We will define a section of 

37®2 Qto®~ ~5/2, as follows. Suppose that {U c"~} is a covering of X by open 

subsets such that 37( U <~ ~) (resp. to (U  C° I)) is a free {Tx (U ~))-module generated by 

co ~J (resp. by r ~ ) .  Define F I ~  F (U <~, 0×) by 

[ ~ , 1 , ~  for j = 1, s, ~)j U ~ ~t t, j tp . . . ,  

dF~,~ = F{~r ~ for i = 2 . . . .  , s and j = 1 . . . .  , s. 
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Put 

p(O~ = det[r~.~)] (~(~)f (~-(~)) "-'sz2, i,j = 1 . . . . .  s. 

It is not hard to see, as in the classical case (cf. [3, p. 85]), that p(~)= p(~) in 

U (~) f3 U (~). Hence the p(~) determine a section p in H°(X, ~®~ @ ~o®"-~)'/2). It is 

easy to see that a different choice of a basis for H°(X, ~f) would result in p being 

multiplied by a nonzero scalar. Therefore, the order of vanishing of 19 at P is 

independent of the choice of basis of H°(X, ~) .  By the order of vanishing of p at 

P, we mean the following. If ~b generates ~p and r generates cop, then we may 

write 

Then 

p ~ fl~s,l -(s-I)s/2. 

ordpp  = o r d e f  = d im 6/(f) = d im ~ / ( f ) ,  

where t~ denotes the local ring at P and ~ is its normalization. 

DEFINITIONS. Suppose that P E X. The ~-Weierstrass weight of P, denoted 

W:e (P), is defined to be ordp p. We call P a Weierstrass point, or W-pt., of ~ if 

W,  (P) > 0. We call P a Weierstrass point of order n of ~ if P is a Weierstrass 

point of ~®". 

REMARKS. (1) Widland [13] gave this definition for Weierstrass points of the 

bundle of dualizing differentials. 

(2) This definition for the bundle of dualizing differentials is also perhaps 

implicit in a paper of Arakelov [1]. 

(3) We would prefer to define W-pts. in terms of singularities of a map 

between two vector bundles, as in [6], but it is not clear what bundle should 

replace the sheaf of principal parts on a singular curve. (This sheaf is no longer 

locally free.) 

PROPOSITION 1. The number of W-pts. of ~,  counting multiplicities, is 

s .  deg(~f) + (s - 1)s(g - 1). 

PROOF. This is immediate from the definitions and a calculation of the degree 
of L¢®' ® 0o ~('-')s/2. • 

The theory of W-pts. as far as smooth points are concerned is quite similar to 

the theory on nonsingular curves. At a smooth point, one may define a sequence 

of gaps and, as in [5], we have 
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PROPOSITION 2. Suppose that P is a smooth point of X. Then P is a W-pt. of 

if and only if h° (~  ®~ ( -  sP)) ~ O. 

Put 8p = dim ~/U. We recall that P is singular if and only if 8 > 0. Following 

Widland, we prove 

PROPOSITION 3. W~ (P) ~ t~p • s • (s - 1). 

PROOF. Let ~': 2(--~ X denote the normalization of X. Suppose that t 

K(X') is a rational function such that ordo t = 1 for all Q E 7r-l(P) and let h be a 

generator (in ~) of (~, the conductor of ff in 0. Then r = dt/h generates tOx.e. 

Let ~bl . . . . .  ~b~ be a basis for H°(X, ~ )  and suppose ~b generates ~e. Write 

~bl.e = FI,jO. Then 

Hence 

Then 

So, 

dF~,i dF~ i dt 
dF~,j= dt d t = h  d t ' - f f  " 

F2j = h dFlq 
dt 

[h d F'" + dh aF'"  at 
d(F2,,) = \ dt 2 at dt / 

( h2 ~ +  dh h dFLi~ dt 
= \ dt- dt dt } -ff " 

G j  = h 2 d2Fl'j dh 
• dt 2' + - ~  F2,i. 

Continuing in this manner, we see that we may write 

i-I FljJt_ i-~ 
F~j = h i-1 ddti giFt,j, 

1=2 

where the g~ are rational functions which are independent of j. It follows that 

det[F~,i] = det [h  '-1 
d'-lFl,i] 

dt ̀ -1 ] 

h~-l~/2det L dt,_l j "  
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Hence, 

ordp p --> ordp h (s-l)s/2 

= dim ~/(h (s-1)~/2) 

= (s - 1)s dim ~/(h)  
2 

= (s - 1). s • 8,, 

with the final equality coming from the fact that X is Gorenstein at P. • 

COROLLARY 1. If P is a singular point of X and ~ is an invertible sheaf on X 

such that h ° ( ~ ) >  1, then P is a Weierstrass point of ~. 

The notion of gaps does not appear to extend to singular points. If P is a 

singular point, then one is interested not in the (Weil) divisors nP, but rather in 

all (0-dimensional) subschemes supported at P. As one of his main results, 

Widland proved: 

THEOREM 1. Suppose that X is an integral, projective Gorenstein curve of 

arithmetic genus g > 1 and suppose P @ X. Then the following are equivalent. 

(1) w~ (e) > o. 
(2) There is a nonzero or @ H°(X, to) satisfying ordpo" >_-g. 

(3) There is a 1-special subscheme (cf. [4]) with support P and length equal to g. 

(4) There is a 1-special subscheme with support P and length at most g. 

EXAMPLE. Let X denote the rational nodal curve obtained from P~ by 

identifying 0 with 0% 1 with - 1, and i with - i. Then Widland showed that tOx 

has no nonsingular Weierstrass points and that at a node P there are no principal 

1-special subschemes of length at most 3. On a generic rational nodal curve with 

g nodes the canonical bundle has g(g - 1) nonsingular Weierstrass points [7]. 

3. A rational nodal curve with a non-dense set of W-pts. 

In this section, X will denote an irreducible, projective rational curve with 

g > 1 nodes. X may be obtained by identifying g pairs of distinct points {b, cj}, 

j = 1 . . . . .  g, of p1. We assume that none of these 2g points is oo. We recall briefly 

the definition and chief properties of the generalized Jacobian of X. Our main 

reference for this material is [.9]. 

Pic(X) is defined to be the group of divisors 

D = Y~ nkxk, Xk E P~ - {b~, Cl . . . . .  b s, cg}, 
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modulo the equivalence relation given by D ---- 0 if D = (f), where f is a rational 

function on P~ such that f(bj) = f ( q )  for all j = 1 . . . . .  g. Then J = Jac(X) is the 

group Pic ° corresponding to divisors of degree O. We have a group isomorphism 

J ~ (C*) g given as follows. If D is a divisor of degree O, then as a divisor on pl it 

equals the divisor of zeros and poles of a rational function f. The isomorphism 

above is then 

t :D~([(bi  ) f(b.)~ 
\ f ( c t ) " ' "  f(c~)] 

We will identify J with (C*) g via this isomorphism. Accordingly, we wilt write 

the operation in J as multiplication, although we will still write the operation in 

the group of divisors as addition. Fix a smooth point x0 E X and let X0 denote 

the set of smooth points of X. Then we have a map 

given by 

q~:{D=~'~nkxk:xkEXo}---~J 

D ~ ~(D - d e g ( D ) .  Xo). 

We then have a map X0--> J given by x ~ q~(x - Xo). Take Xo = oo. Then this map 

is just 

\ C l - - X  ' ' ' ' '  Cg 

(Here, we make the convention that (b i -oo)/(q -oo) = 1.) This map extends to 

give the "Abel -Jacobi"  mapping from effective divisors of degree m with 

support in the smooth locus to the Jacobian: 

~p 

X~o "~ ' L 

" "  \ C g - - X k /  / " 

Following Mumford,  define a function ~-× on J by 

~'x (A1 . . . . .  As) = det 

l - A 1  " '"  l - a ,  

bl -~ clA1 • • " b, - :  c,k, 

g--1 g--I  • L b, - c ,  x, - . -  b ~ - ' - c ~ - ' x ,  
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According to Mumford [9, p. 3.251], "this determinant is the analog of 0 and 

its zeros . . .  are the analog of 0 [the theta divisor]." We will let O denote the zero 

set of ~'x. 

LEMMA 1. Suppose  x , . . . ,  xg ~ Xo. Then  xl +" • • + Xg - ~ is ef fect ive i f  and  

only  i f  "r(q~(xx + ' "  + Xg)) = 0. 

PROOF. [9, p. 3.251]. 

COROLLARY 2. r(q~(X~og-')) = O. 

PROOF. Suppose x~ + • • • + xg_l ~ X(o g-~). Then x~ + • • • + xg_~ + ~ - ~ is effec- 

tive. Hence, 

• ( ~ ( x ,  + . . .  + x~_,)) = r ( ~ ( x ,  + . . .  + x~ ~ + 2 ) )  = o. • 

The following temma is similar to a lemma of Olsen [12, p. 362], but in a very 

special case. 

LEMMA 2. Suppose  g = 2. Suppose  ~ is an  invert ible s h e a f  on X such  that  

h ' ( J f )  = O. Pu t  s = h °( ~ )  and  suppose s > O. I f  P is a smoo th  W - p t .  o[ Sf, then 

,p(~)" (,P(P)F ~ o. 

(Here ,  q~(~)  denotes  the image  o f  the divisor o f  a n y  global  sect ion o f  5F wi th  

support  con ta ined  in Xo under  the A b e l - J a c o b i  map . )  

PROOF. Since P is a smooth W-pt. of ~,  there exists a nonzero section or in 

H°(X, ~ ( -  sP)). Then div(or)-  sP = D is an effective Cartier divisor of degree 

one by the Riemann-Roch Theorem for Gorenstein curves. But then we must 

have D = Q for some O E Xo, since an effective Cartier divisor of degree one 

cannot have support in the singular locus. Hence, 

q~(div(t~)- s P )  = q ~ ( ~ ) ,  q~(sP) ' = q ~ ( ~ ) ,  q~(P) ~ = ~ ( Q )  ~ O. • 

Now put X equal to the irreducible rational curve obtained from P~ by 

identifying - 3  with 0 and 1 with - 1 .  Then 

Put 

r = rx (X,, A2) = A1Az + Xl - 4A2 + 2. 

V = { ( A , , A e ) ~ J :  I a , [ < l  and [a~[<}}. 

LEMMA 3. V A O = •. 
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PROOF. We consider the image of the unit circle I z l =  1 under the linear 

fractional transformation 

- z  - 2  
w = T ( z ) = -  

z - 4  

It is easy to see that this image is the circle 

Iw- l 

and that the interior of I zl= 1 goes into the interior of this circle. Hence, if 

l zl< 1 then[ T(z)] >~. It follows that if lA~ I< 1 and (A1, A2) E O, then I A2] >~. 

Let k be any nonzero complex number and put 

f ( z ) =  z4+3z  3 -  z 2 -  3z + k. 

Note that f( - 3) = f(0) = f(1) = f( - 1) = k. Let L# denote the invertible sheaf on 

X corresponding to the divisor of zeros of f (z ) .  Since d e g ( ~ ) =  4 > 2 g -  2, we 

have: 

LEMMA 4. h ' ( ~ ) = 0 ,  h ° ( ~ ) = 3  and q~(~)=(1,1).  

Let U denote the interior of the circle 

Iz -El =' .  

We may view U as an open subset of Xo. 

LEMMA 5. qg(U)-' C V. 

PROOF. If X ~ X~, then 

( :+{) X X 

q~(x) ' =  x-+3 ' x 

Suppose x E U and put (A,,A2)= ~o(x). Since Ix I<  Ix +31, we have that 

IA~ I < 1. Since the image of the interior of the circle 

I Iz -51 

under the linear fractional transformation 

z - 1  
W =  

z + l  

is the interior of the circle 
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it follows that I h2 ] < ~. • 

Put 

W = {P E X: P is a Weierstrass point of Lf of order n for some n > 1}. 

THEOREM 2. U G W = O. 

PROOF. By Lemma 2, if P ~ X,~ is a Weierstrass point of ~®", then 

~(~, ), . q~(e)-s. = q~(p)-~. E O, 

where s, = h°(~®").  But, if P E U, then q~(p)-i E V. Therefore, qo(P)  -m ~ V 

and q~(P)-" ff~ O for all m ->_ 1. Hence, there are no higher order Weierstrass 

points of 5f in U. • 
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